Dynamical Discrete-Time Load Balancing in Distributed Systems in the Presence of Time Delays

نویسندگان

  • S. Dhakal
  • B. S. Paskaleva
  • M. M. Hayat
  • E. Schamiloglu
  • C. T. Abdallah
چکیده

The implementation of a load balancing policy on a continuous basis in a delay-limited distributed computing environment may not only drain the computational resources of each computational element (CE), but can also lead to an unnecessary exchange of loads between the CEs. This degrades the system performance, measured by the overall completion time of the total tasks in the system. Thus, for a given distribution of the load among the CEs, there has to be an optimal number and distribution of discrete balancing instants. This paper focuses on £xing the number of balancing instants and optimizing the completion time over the strength of load balancing, which is controlled by the so-called gain parameter, and the time when the balancing is executed. First, the case when the load balancing is implemented at a single instant per node is presented. Then, a strategy is considered where a second load balancing instant is allowed for each node. The simulations show that both strategies outperform the continuous balancing policy. Moreover, with the double load-balancing strategy the overall completion time is further reduced in comparison to the single load balancing case. It is also seen that the optimal choice of the gain parameter depends on the delay and this dependence becomes more signi£cant as the delays increase. This interplay between the strength of load balancing and the magnitude delay has a direct effect on the performance of the policy and on the sensitivity to the selection of the balancing instants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenvalue Assignment Of Discrete-Time Linear Systems With State And Input Time-Delays

Time-delays are important components of many dynamical systems that describe coupling or interconnection between dynamics, propagation or transport phenomena, and heredity and competition in population dynamics. The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stabi...

متن کامل

ADAPTIVE FUZZY TRACKING CONTROL FOR A CLASS OF NONLINEAR SYSTEMS WITH UNKNOWN DISTRIBUTED TIME-VARYING DELAYS AND UNKNOWN CONTROL DIRECTIONS

In this paper, an adaptive fuzzy control scheme is proposed for a class of perturbed strict-feedback nonlinear systems with unknown discrete and distributed time-varying delays, and the proposed design method does not require a priori knowledge of the signs of the control gains.Based on the backstepping technique, the adaptive fuzzy controller is constructed. The main contributions of the paper...

متن کامل

FINITE-TIME PASSIVITY OF DISCRETE-TIME T-S FUZZY NEURAL NETWORKS WITH TIME-VARYING DELAYS

This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...

متن کامل

New Robust Stability Criteria for Uncertain Neutral Time-Delay Systems With Discrete and Distributed Delays

In this study, delay-dependent robust stability problem is investigated for uncertain neutral systems with discrete and distributed delays. By constructing an augmented Lyapunov-Krasovskii functional involving triple integral terms and taking into account the relationships between the different delays, new less conservative stability and robust stability criteria are established first using the...

متن کامل

Dynamical Discrete-Time Load Balancing in Distributed Systems in the'presence of Time Delays

Abstmcl-The implementation of a load balancing policy on a continuous basis in a delay-limited distributed computing environment may not only drain the computational resources of each computational element (CE), hut can also lead to an unnecessary exchange of loads between the CEs. This degrades the system performance, measured by the overall completion time of the total tasks in the system. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003